Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TOR complex 2 controls gene silencing, telomere length maintenance, and survival under DNA-damaging conditions.

Identifieur interne : 001482 ( Main/Exploration ); précédent : 001481; suivant : 001483

TOR complex 2 controls gene silencing, telomere length maintenance, and survival under DNA-damaging conditions.

Auteurs : Miriam Schonbrun [Israël] ; Dana Laor ; Luis L Pez-Maury ; Jürg B Hler ; Martin Kupiec ; Ronit Weisman

Source :

RBID : pubmed:19546237

Descripteurs français

English descriptors

Abstract

The Target Of Rapamycin (TOR) kinase belongs to the highly conserved eukaryotic family of phosphatidylinositol-3-kinase-related kinases (PIKKs). TOR proteins are found at the core of two distinct evolutionarily conserved complexes, TORC1 and TORC2. Disruption of TORC1 or TORC2 results in characteristically dissimilar phenotypes. TORC1 is a major cell growth regulator, while the cellular roles of TORC2 are not well understood. In the fission yeast Schizosaccharomyces pombe, Tor1 is a component of the TORC2 complex, which is particularly required during starvation and various stress conditions. Our genome-wide gene expression analysis of Deltator1 mutants indicates an extensive similarity with chromatin structure mutants. Consistently, TORC2 regulates several chromatin-mediated functions, including gene silencing, telomere length maintenance, and tolerance to DNA damage. These novel cellular roles of TORC2 are rapamycin insensitive. Cells lacking Tor1 are highly sensitive to the DNA-damaging drugs hydroxyurea (HU) and methyl methanesulfonate, similar to mutants of the checkpoint kinase Rad3 (ATR). Unlike Rad3, Tor1 is not required for the cell cycle arrest in the presence of damaged DNA. Instead, Tor1 becomes essential for dephosphorylation and reactivation of the cyclin-dependent kinase Cdc2, thus allowing reentry into mitosis following recovery from DNA replication arrest. Taken together, our data highlight critical roles for TORC2 in chromatin metabolism and in promoting mitotic entry, most notably after recovery from DNA-damaging conditions. These data place TOR proteins in line with other PIKK members, such as ATM and ATR, as guardians of genome stability.

DOI: 10.1128/MCB.01879-08
PubMed: 19546237
PubMed Central: PMC2725747


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TOR complex 2 controls gene silencing, telomere length maintenance, and survival under DNA-damaging conditions.</title>
<author>
<name sortKey="Schonbrun, Miriam" sort="Schonbrun, Miriam" uniqKey="Schonbrun M" first="Miriam" last="Schonbrun">Miriam Schonbrun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv</wicri:regionArea>
<wicri:noRegion>Tel-Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laor, Dana" sort="Laor, Dana" uniqKey="Laor D" first="Dana" last="Laor">Dana Laor</name>
</author>
<author>
<name sortKey="L Pez Maury, Luis" sort="L Pez Maury, Luis" uniqKey="L Pez Maury L" first="Luis" last="L Pez-Maury">Luis L Pez-Maury</name>
</author>
<author>
<name sortKey="B Hler, Jurg" sort="B Hler, Jurg" uniqKey="B Hler J" first="Jürg" last="B Hler">Jürg B Hler</name>
</author>
<author>
<name sortKey="Kupiec, Martin" sort="Kupiec, Martin" uniqKey="Kupiec M" first="Martin" last="Kupiec">Martin Kupiec</name>
</author>
<author>
<name sortKey="Weisman, Ronit" sort="Weisman, Ronit" uniqKey="Weisman R" first="Ronit" last="Weisman">Ronit Weisman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19546237</idno>
<idno type="pmid">19546237</idno>
<idno type="doi">10.1128/MCB.01879-08</idno>
<idno type="pmc">PMC2725747</idno>
<idno type="wicri:Area/Main/Corpus">001500</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001500</idno>
<idno type="wicri:Area/Main/Curation">001500</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001500</idno>
<idno type="wicri:Area/Main/Exploration">001500</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TOR complex 2 controls gene silencing, telomere length maintenance, and survival under DNA-damaging conditions.</title>
<author>
<name sortKey="Schonbrun, Miriam" sort="Schonbrun, Miriam" uniqKey="Schonbrun M" first="Miriam" last="Schonbrun">Miriam Schonbrun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv</wicri:regionArea>
<wicri:noRegion>Tel-Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laor, Dana" sort="Laor, Dana" uniqKey="Laor D" first="Dana" last="Laor">Dana Laor</name>
</author>
<author>
<name sortKey="L Pez Maury, Luis" sort="L Pez Maury, Luis" uniqKey="L Pez Maury L" first="Luis" last="L Pez-Maury">Luis L Pez-Maury</name>
</author>
<author>
<name sortKey="B Hler, Jurg" sort="B Hler, Jurg" uniqKey="B Hler J" first="Jürg" last="B Hler">Jürg B Hler</name>
</author>
<author>
<name sortKey="Kupiec, Martin" sort="Kupiec, Martin" uniqKey="Kupiec M" first="Martin" last="Kupiec">Martin Kupiec</name>
</author>
<author>
<name sortKey="Weisman, Ronit" sort="Weisman, Ronit" uniqKey="Weisman R" first="Ronit" last="Weisman">Ronit Weisman</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="eISSN">1098-5549</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CDC2 Protein Kinase (genetics)</term>
<term>CDC2 Protein Kinase (metabolism)</term>
<term>Cell Survival (physiology)</term>
<term>DNA Damage (MeSH)</term>
<term>DNA Replication (MeSH)</term>
<term>Enzyme Activation (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Gene Silencing (MeSH)</term>
<term>Hydroxyurea (pharmacology)</term>
<term>Methyl Methanesulfonate (pharmacology)</term>
<term>Mitosis (drug effects)</term>
<term>Mitosis (physiology)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Mutagens (pharmacology)</term>
<term>Nucleic Acid Synthesis Inhibitors (pharmacology)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (metabolism)</term>
<term>Schizosaccharomyces (cytology)</term>
<term>Schizosaccharomyces (drug effects)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
<term>Telomere (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (MeSH)</term>
<term>Altération de l'ADN (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Extinction de l'expression des gènes (MeSH)</term>
<term>Hydroxy-urée (pharmacologie)</term>
<term>Inhibiteurs de la synthèse d'acide nucléique (pharmacologie)</term>
<term>Mitose (effets des médicaments et des substances chimiques)</term>
<term>Mitose (physiologie)</term>
<term>Mutagènes (pharmacologie)</term>
<term>Méthanesulfonate de méthyle (pharmacologie)</term>
<term>Protein kinases (génétique)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protéine-kinase CDC2 (génétique)</term>
<term>Protéine-kinase CDC2 (métabolisme)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Réplication de l'ADN (MeSH)</term>
<term>Schizosaccharomyces (cytologie)</term>
<term>Schizosaccharomyces (effets des médicaments et des substances chimiques)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Survie cellulaire (physiologie)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Télomère (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>CDC2 Protein Kinase</term>
<term>Protein Kinases</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>CDC2 Protein Kinase</term>
<term>Multiprotein Complexes</term>
<term>Protein Kinases</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Hydroxyurea</term>
<term>Methyl Methanesulfonate</term>
<term>Mutagens</term>
<term>Nucleic Acid Synthesis Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Mitosis</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Mitose</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protein kinases</term>
<term>Protéine-kinase CDC2</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Schizosaccharomyces</term>
<term>Telomere</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Protein kinases</term>
<term>Protéine-kinase CDC2</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
<term>Télomère</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Hydroxy-urée</term>
<term>Inhibiteurs de la synthèse d'acide nucléique</term>
<term>Mutagènes</term>
<term>Méthanesulfonate de méthyle</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mitose</term>
<term>Survie cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cell Survival</term>
<term>Mitosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>DNA Damage</term>
<term>DNA Replication</term>
<term>Enzyme Activation</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Gene Silencing</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Altération de l'ADN</term>
<term>Extinction de l'expression des gènes</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Réplication de l'ADN</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Target Of Rapamycin (TOR) kinase belongs to the highly conserved eukaryotic family of phosphatidylinositol-3-kinase-related kinases (PIKKs). TOR proteins are found at the core of two distinct evolutionarily conserved complexes, TORC1 and TORC2. Disruption of TORC1 or TORC2 results in characteristically dissimilar phenotypes. TORC1 is a major cell growth regulator, while the cellular roles of TORC2 are not well understood. In the fission yeast Schizosaccharomyces pombe, Tor1 is a component of the TORC2 complex, which is particularly required during starvation and various stress conditions. Our genome-wide gene expression analysis of Deltator1 mutants indicates an extensive similarity with chromatin structure mutants. Consistently, TORC2 regulates several chromatin-mediated functions, including gene silencing, telomere length maintenance, and tolerance to DNA damage. These novel cellular roles of TORC2 are rapamycin insensitive. Cells lacking Tor1 are highly sensitive to the DNA-damaging drugs hydroxyurea (HU) and methyl methanesulfonate, similar to mutants of the checkpoint kinase Rad3 (ATR). Unlike Rad3, Tor1 is not required for the cell cycle arrest in the presence of damaged DNA. Instead, Tor1 becomes essential for dephosphorylation and reactivation of the cyclin-dependent kinase Cdc2, thus allowing reentry into mitosis following recovery from DNA replication arrest. Taken together, our data highlight critical roles for TORC2 in chromatin metabolism and in promoting mitotic entry, most notably after recovery from DNA-damaging conditions. These data place TOR proteins in line with other PIKK members, such as ATM and ATR, as guardians of genome stability.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19546237</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>09</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5549</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2009</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>TOR complex 2 controls gene silencing, telomere length maintenance, and survival under DNA-damaging conditions.</ArticleTitle>
<Pagination>
<MedlinePgn>4584-94</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/MCB.01879-08</ELocationID>
<Abstract>
<AbstractText>The Target Of Rapamycin (TOR) kinase belongs to the highly conserved eukaryotic family of phosphatidylinositol-3-kinase-related kinases (PIKKs). TOR proteins are found at the core of two distinct evolutionarily conserved complexes, TORC1 and TORC2. Disruption of TORC1 or TORC2 results in characteristically dissimilar phenotypes. TORC1 is a major cell growth regulator, while the cellular roles of TORC2 are not well understood. In the fission yeast Schizosaccharomyces pombe, Tor1 is a component of the TORC2 complex, which is particularly required during starvation and various stress conditions. Our genome-wide gene expression analysis of Deltator1 mutants indicates an extensive similarity with chromatin structure mutants. Consistently, TORC2 regulates several chromatin-mediated functions, including gene silencing, telomere length maintenance, and tolerance to DNA damage. These novel cellular roles of TORC2 are rapamycin insensitive. Cells lacking Tor1 are highly sensitive to the DNA-damaging drugs hydroxyurea (HU) and methyl methanesulfonate, similar to mutants of the checkpoint kinase Rad3 (ATR). Unlike Rad3, Tor1 is not required for the cell cycle arrest in the presence of damaged DNA. Instead, Tor1 becomes essential for dephosphorylation and reactivation of the cyclin-dependent kinase Cdc2, thus allowing reentry into mitosis following recovery from DNA replication arrest. Taken together, our data highlight critical roles for TORC2 in chromatin metabolism and in promoting mitotic entry, most notably after recovery from DNA-damaging conditions. These data place TOR proteins in line with other PIKK members, such as ATM and ATR, as guardians of genome stability.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schonbrun</LastName>
<ForeName>Miriam</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Laor</LastName>
<ForeName>Dana</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>López-Maury</LastName>
<ForeName>Luis</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bähler</LastName>
<ForeName>Jürg</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kupiec</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Weisman</LastName>
<ForeName>Ronit</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>08-0070</GrantID>
<Acronym>AICR_</Acronym>
<Agency>Worldwide Cancer Research</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<Acronym>CRUK_</Acronym>
<Agency>Cancer Research UK</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009153">Mutagens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019384">Nucleic Acid Synthesis Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>AT5C31J09G</RegistryNumber>
<NameOfSubstance UI="D008741">Methyl Methanesulfonate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C523461">Tor1 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.22</RegistryNumber>
<NameOfSubstance UI="D016203">CDC2 Protein Kinase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.22</RegistryNumber>
<NameOfSubstance UI="C469447">cdc2 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>X6Q56QN5QC</RegistryNumber>
<NameOfSubstance UI="D006918">Hydroxyurea</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016203" MajorTopicYN="N">CDC2 Protein Kinase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004249" MajorTopicYN="Y">DNA Damage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004261" MajorTopicYN="N">DNA Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="Y">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006918" MajorTopicYN="N">Hydroxyurea</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008741" MajorTopicYN="N">Methyl Methanesulfonate</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008938" MajorTopicYN="N">Mitosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009153" MajorTopicYN="N">Mutagens</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019384" MajorTopicYN="N">Nucleic Acid Synthesis Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016615" MajorTopicYN="N">Telomere</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19546237</ArticleId>
<ArticleId IdType="pii">MCB.01879-08</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.01879-08</ArticleId>
<ArticleId IdType="pmc">PMC2725747</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Cell Biol. 2007 Nov;9(11):1263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17952063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Dec 14;378(6558):739-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7501024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Oct;179(20):6325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Apr 15;17(8):2235-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9545237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Jul;18(7):3782-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9632761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Nov 5;8(22):1211-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1998 Dec;9(12):3321-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Feb;10(2):245-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9950674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Nov 28;26(23):4812-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17962806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2000 Dec;3(6):631-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11121785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 30;276(13):9583-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2001 May;39(3):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2001 Dec;40(4):251-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11795845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Aug;161(4):1437-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12196391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 Sep;32(1):143-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12161753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Jan 8;13(1):68-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12526748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2002 Dec 5;1(12):983-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12531008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Feb 28;326(4):1081-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Jun 15;17(12):1507-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12815070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2004;279:1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Nov 17;22(22):6045-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14609951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2004 Apr;3(2):406-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15075270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2003 Jul 10;4(1):27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12854975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Aug;36(8):809-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15195092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1987 May 22;49(4):559-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3032459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Nov 2;342(6245):39-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2682257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Dec;12(12):1301-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18076567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Dec;12(12):1357-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18076573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Feb 15;410(1):19-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18215152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Feb 1;7(3):358-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18235227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Aug;15(8):873-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18622392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Oct;28(19):5977-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Jun 1;122(Pt 11):1737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19417002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14340-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11114166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1990 Feb 23;60(4):665-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2406029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:795-823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1991 Dec;10(13):4291-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1756736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1992 Nov;6(11):2035-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1427071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Jun;152(2):495-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10353894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Nov;6(11):1122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15467718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Jan;25(2):590-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15632061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 May 26;435(7041):507-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2006 Feb;23(3):173-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16498704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Apr 6;440(7085):824-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16598261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Apr 21;22(2):159-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Aug;23(4):483-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 31;442(7106):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2006 Dec;11(12):1367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 23;282(8):5346-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3514-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Mar;175(3):1153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 May;18(5):1756-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2007 May;14(5):372-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17450151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2007 Aug;17(8):666-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17680028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Aug 21;17(16):1432-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17689960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Oct;27(20):7007-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17698581</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Israël</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="B Hler, Jurg" sort="B Hler, Jurg" uniqKey="B Hler J" first="Jürg" last="B Hler">Jürg B Hler</name>
<name sortKey="Kupiec, Martin" sort="Kupiec, Martin" uniqKey="Kupiec M" first="Martin" last="Kupiec">Martin Kupiec</name>
<name sortKey="L Pez Maury, Luis" sort="L Pez Maury, Luis" uniqKey="L Pez Maury L" first="Luis" last="L Pez-Maury">Luis L Pez-Maury</name>
<name sortKey="Laor, Dana" sort="Laor, Dana" uniqKey="Laor D" first="Dana" last="Laor">Dana Laor</name>
<name sortKey="Weisman, Ronit" sort="Weisman, Ronit" uniqKey="Weisman R" first="Ronit" last="Weisman">Ronit Weisman</name>
</noCountry>
<country name="Israël">
<noRegion>
<name sortKey="Schonbrun, Miriam" sort="Schonbrun, Miriam" uniqKey="Schonbrun M" first="Miriam" last="Schonbrun">Miriam Schonbrun</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001482 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001482 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19546237
   |texte=   TOR complex 2 controls gene silencing, telomere length maintenance, and survival under DNA-damaging conditions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19546237" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020